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The procedure for computing the resolution function of triple-axis spectrometers is reformulated to 
make allowance for the spatial configuration of the experimental set-up and for the curvature of the 
monochromator and analyser crystals. Simple formulae are given for computing the resolution function 
of conventional instruments as well as of spectrometers with focusing crystals. 

Introduction 

The calculation of the resolution function for slow- 
neutron spectrometers has received considerable at- 
tention during the last decade and especially since the 
paper of Cooper & Nathans (1967). The usual com- 
putation technique is based on the concept of the 
angular transmission function introduced in the pion- 
eering work of Sailor, Foote, Landon & Wood (1956) 
and developed by Caglioti, Paoletti & Ricci (1958). 
Although it has been recognized occasionally that the 
description of experimental arrangements in terms of 
angular distributions only is incomplete and that spatial 
distributions should also be considered [see Dietrich 
(1968) and Dorner (1970), for instance], little progress 
has been made in the technique of accounting for 
spatial effects when considering the optics of neutron 
crystal spectrometers. 

Recently there has been an increased interest in ex- 
ploiting spatial focusing effects occurring when bent 
crystals are used. Riste (1970) and Nunes & Shirane 
(1971) have reported substantial gains in neutron 
fluxes from vertically bent monochromators. Curved 
crystals and related effects have also been recently in- 
vestigated experimentally by Karas, Rauch & Seidl 
(1971), Antonini, Corchia, Nicotera & Rustichelli 
(1972), Kalus, Gobert & Schedler (1973) and others. 

The infuence of crystal curvature on the spectrom- 
eter resolution cannot be described properly within 
the usual computation technique in which only angular 
variables are used. Attempts have been made by 
Maier-Leibnitz (1970), Dachs (1970), Nunes & Shirane 
(1971), Currat (1973) to calculate the effect of crystal 
curvature on the resolution or luminosity of crystal 
spectrometers. The results reported so far do not seem 
to offer a suitable basis for a consistent treatment of 
the resolution function problem. 

Meanwhile, a new computation procedure has been 
proposed in part II of this series by Stoica (1975b) for 
calculating the resolution (which is particularly sen- 
sitive to spatial effects) of time-of-flight instruments. 
This procedure [see also Popa (1974)] consists in using 
as initial variables the spatial coordinates describing 
the geometry of the experiment and then in making a 

transformation to angular variables. It is at once ob- 
vious that the method should also be suitable for treat- 
ing effects related to the crystal shape and curvature in 
neutron crystal spectrometers. 

However, in this case the initial variables of the 
problem are not independent, owing to the constraints 
imposed by Bragg reflexion optics. For this reason the 
general calculation method developed in the part I of 
this series by Stoica (1975a) cannot be applied directly: 
one has to operate first a reduction to independent 
variables. The aim of this paper is to develop the 
procedure for computing the normal approximation 
to the triple-axis spectrometer resolution function in 
the general case, spatial effects included. 

The problem under consideration is the determina- 
tion of the resolution function defined in the Q, 09 space, 
Q = k ~ - k f  being the wave-vector transfer and hog= 
hZ(k~-k~)/(2m) the energy transfer in the scattering 
process. For a nominal setting of the spectrometer at 
Qo and ho90 (defined by the most probable wave-vectors 
kx and kp) the probability of measuring the transfers Q 
and ho9 is given by R(X)/Ro, R(X) being the resolution 
function. In the normal approximation this function 
has the form: 

R(X) = R0(2zc)-zl/d~ M exp (--½XTMX). (1) 

Here X is the column matrix of the four-component 
vector X = (Q - Qo, o9 - COo), XT is the row matrix trans- 
pose of X, and M is the resolution matrix, the inverse 
of which is the covariance matrix M-1 = {(X, Xj)} of the 
resolution function. 

The general formulation of the resolution function 
problem advanced by Stoica (1975a) reduces the cal- 
culation of the normal approximation (1) to the deter- 
mination of the covariance matrix of the distribution 
P(kt, kf) of the incident and scattered neutron wave- 
vectors allowed to pass through the spectrometer. 
Having introduced the six-component vector Y =  
(k~ - kx, kf - kF) = (Akt, k~l, ki3~, Akf, kfYz, k~32) one 
can express the normal approximation to P(k~,kf) in 
the form: 

P(Y)= Po(2Z0-3V'det - N exp ( -  ½YTN-~ (2) 

where N-~=  {(Y~ Yj)}. With the aid of the matrix B of 
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the linearized relation X--BY the covariance matrix 
of the resolution function is constructed through the 
relation: 

M -  1 = BN - XBr. (3) 

This relation, which would be obvious if the matrix B 
were quadratic, results as a particular case from the 
general expression of the resolution function moments 
derived in part I. The matrix B is known (see Appendix 
1) so that the problem is reduced to the calculation of 
the matrix N-~ and the normalization factor R0. 

The conventional case of a triple-axis spectrometer 
with Soller collimators is considered in § 1. The usual 
calculation procedure is reformulated to allow a gen- 
eralization to be made. This generalization, which in- 
cludes spatial effects and lattice spacing spread is 
presented in § 2. Some consequences of the formulae 
obtained are discussed in § 3. 

respectively, R~ = k a ctg OMR ° and R~a = k s ctg OAR°A. 
R ° and R°a are the integrated crystal reflectivities de- 
fined as usual. The quantity (27r)4/d~ G is the pro- 
duct of the solid angles defined by the collimators. 

As the optics of the Bragg reflexion imposes some 
constraints on the angular variables, the vectors U and 
W are not independent. The constraints may be ex- 
pressed as W =  CU. The elements of the matrix C are 
given in Appendix 1. The distribution of the variables 
u~, constraints taken into account, is calculated through 
the relation: 

P(U)=(16  sin OM sin 0,t) -11 P ( U , W ) 6 ( W -  CU)dW. 

(6) 
The factor (16 sin 0M sin 0,t) -1 here ensures the proper 
normalization of the 6 ( W - C U )  function. After per- 
forming the integration one obtains: 

1. The conventional triple-axis spectrometer 

In the classical calculation procedure the distribution 
P ( k .  k f) is computed by using the angular transmission 
functions T~(~,~,fi~) of the Soller collimators [Yi and ~ 
are horizontal and vertical divergence angles denoted 
as in the paper of  Cooper & Nathans (1967)] and the 
reflectivity functions rM(~M,~M) and rA(~A,~A) of the 
monochromator and analyser crystals (~ and ~' are 
angular deviations of the mosaic blocks in the horizon- 
tal and vertical planes, respectively). To generalize this 
procedure, let us reformulate it in matrix language. 

We define the following vectors of the an- 
gular variables: U = (?0, 71, ~o, 61, Y2, )'3, ~2, ~3) and W = 
(~M,~M,~A,~)- The distribution of these variables is 

3 

P(U,W)=rM((M,~)rA(~A,~) H T~(y,,cS,). In the nor- 
i = 0  

mal approximation this distribution has the form: 

1/de1: G P(U, W)= Po --~)4 " exp (-½URGE) 

l/det-F 
x ~ 2 - )  ~ - e x p  ( - ½ W r F W ) .  (4) 

The diagonal matrix G has the form G =  
{0~O2,(xi"2,~0"2,j~i"2,~2-2,0~3"2, j~2-2,j~32}, ~l,~l~l being the 
standard deviations of y~,6~, respectively. The matrix 
F is also diagonal, F=  {rG';r/~-',r/2';qA-~}, the quan- 
tities r/ and r/' being the standard deviations of the 
differential reflectivities dependences on ~ and ~' [for 
crystals of simple shape r /and r/' can be calculated as 
functions of mosaic spread and neutron energy, see 
Grabcev & Stoica (1975) and also Popovici, Gheor- 
ghiu & Gelberg (1969)]. 

The normalization constant Po in (4) is given by: 

k u(2n)4/l/det G (5) Po = RMRa 

where R} and R] are the monochromator and analyser 
crystal reflectivities after integration over k~ and kf 

P0 
P ( U ) =  16 sin 0M sin 0A 

] /detG / ~  F 
x (2-~)  4 (2.n)~--exp ( -{-UrHU) (7) 

where H is given by: 

H = G + C r F C .  (8) 

The distribution (7) is normalized to IP (U)dU=Ro  

with 
Po /de t  G det I~ 

R°= 64n' sin 0M sin 0A l/det H (9) 

As the normalization does not change in what follows, 
this factor propagates up to the relation (1). 

The components of the vector Y = ( k ~ - k l , k ~ . - k F )  
can be expressed through the variables u~ with the aid 
of a linearized relation Y = A U .  The matrix A of this 
relation is specified in Appendix 1. As u~ are already 
independent variables, one may apply the prescription 
of part I to obtain the covariance matrix N -1 of the 
distribution P(Y) in the form: 

N -1 = A H -  1A r. (10) 

The matrix N - t  obtained in this way is cell- 
diagonal, consisting of two 3 x 3 blocks N~ 1 and N~ 1 
on the main diagonal, N- 1= {N~I, N21 }. This means that 
the distribution P ( k . k f )  can be expressed as a product 
of two functions pM(k~) and pA(kf) referring to the 
monochromator and analyser units, respectively. In 
the normal approximation the equal probability sur- 
faces of kt and k~ are ellipsoids in the wave-vector 
space. 

The determination of the resolution function is now 
complete: the covariance matrix is obtained through 
(8), (10) and (3), that is: 

M -  1 = BA(G + CrFC)-  1ArBr (11) 
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and the normalization factor is given by (9), (5) and (8). 
To obtain the normalization factor R0(Qo, COo) as 

defined by Dorner (1972), Chesser & Axe (1973) and 
also [up to a factor 1/(2nr/Mr/~)] by Tucciarone, Lau, 
Corliss, Delapalme & Hastings (1971) one has to 
multiply by (2n)-21/det M the quantity given by (9). 
The difference is due to the normalization convention 
used here. Besides, the reflectivity factors PM and PA 
of these authors must be identified with the quantities 
ROM/(~/~glM) and R°/(V2~qA), respectively. 

The results obtained in the above manner are fully 
equivalent to those derived by Cooper & Nathans 
(1967), Bjerrum-Meller & Nielsen (1970), Quittner 
(1971), Werner & Pynn (1971), Grabcev (1973), if al- 
lowance is made for several minor mistakes appearing 
occasionally in some of these papers [see Dorner (1972) 
and Chesser & Axe (1973) for rectifications to the 
papers of Cooper & Nathans (1967) and Tucciarone, 
Lau, Corliss, Delapalme & Hastings (1971)]. 

As to the fact that one has first to calculate M-~ and 
then to invert it, this is not actually an inconvenience, 
but rather the right sequence, as it is the elements of 
M -  ~ that have a clear physical meaning. The resolution 

detector 

x "V~'~ y30A", 

• O a ~ ,  

Y4 L 3 a n a ~  
X2 

Y2 -~ L . ~  

sample 

/ 
Yo LI/" 

• ~ .Lo . ~ _ _ _ _ ~ _ ~ _ y _ ?  

0130 source xl 
Fig. 1. The geometry of the neutron scattering experiment. 

The angles 20M, 20s and 20,1 are positive in the arrangement 
shown. The coordinate systems used in computations are 
indicated. 

function properties are best visualized at the covariance 
matrix level. 

2. The general case, spatial effects included 

The above derivation will be now generalized to include 
the spatial arrangement of the spectrometer elements 
and the curvature of crystals. In place of the angular 
variables of the preceding section we shall use as initial 
variables the coordinates r~ of the points where the 
neutron is emitted from the source (r0), reflected in the 
monochromator (rl), scattered in the sample (r2), re- 
flected again in the analyser (r3) and finally detected 
(r4). The reference systems for these coordinates are 
shown in Fig. 1. The axes Yl and Y3 of the crystal refer- 
ence frames are directed along the bisectors of the 
angles 20M and 20A, respectively, and the x2 axis of the 
sample reference frame is directed along the bisector 
of the scattering angle 20s. The distances between the 
origins of the reference systems are denoted by Lg 
(i = 0, 1,2, 3). The shape of the crystals and the sample 
will be described by probability distributions pt(rt). 
The normal approximation to p~(r~) will be used. 

Let us define the following vector V of the relevant 
spatial coordinates: V=  (Yo, Zo, xl, y~, z~, Xz, Y2, z2, x3, 
Y3, z3, Y4, z4) and let S-~= {(v~vj)} be the covariance 
matrix of the distribution of these variables. For given 
crystals and sample this matrix is known. Its structure 
is given explicitly in Appendix 2. The initial, linearly 
dependent, variables of the problem are now v~ and 
wt. Their distribution P(V,W) is approximated by: 

]/det S 
P(V,W) =P£ (2n)~3/2 exp (-½VTSV) 

/a- r 
x (2~)------Texp(-½WrFW). (12) 

The angular variables u~ can be expressed through 
the spatial variables v~ by considering the scattering 
geometry in real space. The relation between U and V 
has the form U = D V  with the matrix D specified in 
Appendix 2. The covariance matrix of the distribution 
of angular variables in the absence of constraints is 
DS-1D r, which is the analogue of the matrix G -1 of 
the preceding section. Correspondingly, the normaliza- 
tion constant P0 in (12) is obtained from an expression 
similar to (5), that is: 

p;= RMRAk k (2~)4/d-~ ( D S -  16T ) . (13) 

As before, the constraints imposed by the optics of 
Bragg reflexion will be used to eliminate the variables 
w~ through an integration. For the case of curved 
crystals these constraints may be easily shown to have 
the form: 

yl = - yo -t- 2(~M -t- Yl/qM) ; 61 =50-- 2 sin 0M(~ + za/o'M) 
)'3 = -- )'2 + 2(~A + Y3/OA); 63 =62 -- 2 sin 0a(~  + Zz/e'a). 

(14) 
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The angular variables in (14) may be expressed 
through the spatial ones. The expression for the con- 
straints then becomes W = TV. The matrix T is specified 
explicitly in Appendix 2. By integrating the distribution 
(12) with respect to w~, constraints taken into account, 
one obtains the distribution 

P(V)= Ro(27r)-13/Zl/det K exp (-½VTKV) 

with the matrix K given by 

K = S + TrFT (15) 

and the normalization factor R0 given by the expression" 

Po 1/'C[~ S det F 
R0= 64zc 2 sin 0M sin 0A- I / ~ K  (16) 

which is the analogue of (9). 
The next step is to apply to P(V) the transformation 

U = D V  from spatial to angular variables. One then 
obtains the distribution 

P (U)=  Ro(2Zc)-4]/~-H exp (-½UTHU) 

with the matrix H given by 

H-'  =DK-'D r. (17) 

At this stage the presence of Soller collimators, if 
any, may be accounted for in a simple way: one has to 
multiply the distribution P(U) by the transmission 
function of these collimators. The effect of this opera- 
tion is to change the matrix H into H + G. The normal- 
ization constant P0 also changes into 

Po'=RMRaU k(2~)4/Vde{[G+(DS_~DT)_t]. (13a) 

The covariance matrix of the distribution (2) is now 
obtained through the relation: 

N-~ = A ( H +  G)-~A r (18) 

where A is the matrix defined earlier. The matrix N-  
has the following structure (the elements specified are 
different from zero): 

<Y, Y2> 0 
0 

o 0 
0 

0 < Y3 Y6> 

<riY,> < YiY > 1 
<Y2Y > 0 

0 0 <0 3Y > 

0 0 I .  
(19) 

In comparison with the conventional case, the struc- 
ture of this matrix has changed: the finite sample di- 
mensions have introduced a coupling between the 
monochromator and analyser units. The smaller the 
monochromator or analyser mosaic spread, the 
stronger is the coupling. The coupling is expressed by 
the cross-correlation between the components Y~ 
referring to different units. As a result, one can no 
longer, except for very small samples, express P ( k ,  k f) 
as a product of two independent transmission func- 

tions; nor can one define rigorously separate mono- 
chromator and analyser ellipsoids in the wave-vector 
space. 

At this point the crystal lattice spacing spread may 
be introduced most easily: it can be shown that the 
only change to be made is the modification of the 
elements <Y~) and <Y~) of the above matrix to 
(Y~>+k~(AzZM)/z~ and (Y~>+k~<Az~>/z~, respec- 
tively. Here <Az~t> and <AzZa> are the dispersions of the 
deviations ArM and AzA of the lattice vector moduli 
from the corresponding mean values zM and % (for 
imperfect crystals these deviations come from the 
mosaic block size). The modification described has to 
be operated by all means for crystals in back reflexion: 
the additional term then becomes dominant even for 
perfect crystals [see Alefeld, Birr & Heidemann (1968)]. 

The final expression for the resolution matrix be- 
comes, for the general case: 

M-~=BA{[D(S+TrFT)-~Dr]  -~ +G}-~ArB r. (20) 

This is the desired generalization of (11). If there are 
no Soller collimators then G = 0  and (20) simplifies to 
M -  1 = BAD(S + TrFT)-  ~DrATB r. The normalization 
factor is obtained through (16), (13a) and (15). The 
new factor computed in this way takes into account 
automatically the absolute intensity dependence on the 
distances Li, the dimensions and shape of the crystals 
and sample and the exposed areas of the neutron 
source and detector, as well as on the divergence of 
Soller collimators, if any. All the matrices necessary 
for the computations are defined in Appendices 1 and 
2. The computations are performed easily with the aid 
of standard subroutines available in computer libraries. 

3. Discussion 

It is beyond the scope of this paper to evaluate explicit 
expressions for the resolution-function covariance- 
matrix elements in the general case. These expressions 
are cumbersome and little can be derived at their level 
without numerical computations (which, in turn, are 
most conveniently performed in matrix form). The 
matrix formulation allows one to handle in a simple 
manner the complicated expressions involved in the 
problem under consideration. 

To illustrate, however, the way in which the focusing 
effects arise from the results, let us consider the sim- 
plified case when there are no Soller collimators and 
the crystals and the sample have the form of plates of 
negligible thickness. Because the x~ and Yi coordinates 
for thin plates are coupled, the number of spatial co- 
ordinates is reduced and one has to redefine the ma- 
trices S, T and D of the preceding section. This is done 
in Appendix 3. The expressions for the elements of the 
covariance matrix of the distribution P(kt,ks) are 
rather complicated even in this simple case, because of 
the coupling between the monochromator and analyser 
units. If this coupling is neglected, then the mono- 
chromator transmission function pM(k~) may be de- 
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fined. For this function, the explicit expressions of the 
normalization factor and of the elements of the co- 
variance matrix are given in Appendix 3. 

The normalization factor PM0 gives the total mono- 
chromatic neutron flux falling onto the sample. The 
expression of PM0 contains in the denominator the 
productf(QM)f'(Q~) = (rlzu + t~l (y~) + t~2(y~) q- t~a(y~)) 1/2 

'2 2 2 2 2 2 2 1/2 [(17M-}-tz6(Zo)-}-t27(Zl)-J-t28(22)), the coefficients 
hi being those defined in Appendix 3. The co- 
efficients in front of (y~) and (z~) depend on the cur- 
vature radii ~M and Q~ and can be cancelled by a suit- 
able choice of these radii. This corresponds to the 
spatial focusing. The explicit expression of the hori- 
zontal focusing condition q2=0 is: 

sin (0M +zO/Lo+sin (OM--Z1)/L~=2 cos Z~/~M. (21) 

Here Z1 is the inclination angle of the monochromator 
thin plate with respect to the reflecting planes. By 
noting that the curvature radius of the thin plate is 
Ru=QM/cos Zl one recognizes the familiar relation of 
horizontal focusing as given, for instance, by Maier- 
Leibnitz (1970). The vertical focusing condition is 
t27 = 0 ,  that is: 

l /L0+ 1/L,=2 sin 0M/Q~ (22) 

which is the relation discussed by Riste (1970). 
The flux gain of the bent crystal over the plane one 

is given by the ratio f(c,o)/f(QM) for horizontally bent 
crystals and by f '(~)/f '(Q'u) for vertically bent ones 
[ f a n d f '  being given by (A3.3 and (A3.4) in Appendix 
3]. The gain factor for vertically bent crystals has been 
calculated also by Nunes & Shirane (1971) and Currat 
(1973) from simple geometrical considerations for 
crystals of zero mosaic spread. The expression 
f'(oo)/f'(Q'u) and the formulae of Currat (1973) des- 
cribe equally accurately the experimental data of 
Nunes & Shirane (1971). 

The expression (A3.2) of the factor PMo may be used 
to calculate the intensity dependence on the crystal 
cutting angle Z1- When doing this, care should be taken 
to account also for the crystal reflectivity dependence 
on Z~. For crystals in reflexion geometry, to a first ap- 
proximation (strong extinction, weak absorption) R~ 
is proportional to lsin (OM-z1)/sin (OM +Z0] for Z~ be- 
tween zero and 0M and is independent of Z~ elsewhere. 

The expressions for the monochromator transmis- 
sion covariance matrix elements given in Appendix 3 
contain in the denominators just the factors which are 
minimized by the spatial focusing conditions. Therefore 
the gain in intensity at focusing implies generally a 
dilatation of the monochromator ellipsoid. However, 
it can be seen that the element (Y~) can be minimized 
b y  fulfilling the conditions dl2 = d22--" 1/~M. These are 
the conditions of energy focusing, as (YZ~)=(Ak~) 
gives the energy spread of the neutron beam falling on 
the sample. If they are fulfilled, both spatial and energy 
focusing take place. The explicit conditions are: 

L0/sin (OM+z1)=L~/sin (OM--Zx)=RM . (23) 

It may be ascertained that (23) coincides with the con- 
dition of monochromatic focusing as given by Maier- 
Leibnitz (1970). When (23) is satisfied the mono- 
chromator ellipse in the I71, Y2 plane orientates with 
its major axis almost normally to k~. This is also 
evident from the expression for (II1 II2). 

The expression for (Y~) shows also that for very 
small samples and small monochromator mosaic 
spread the energy focusing still occurs when the con- 
dition d22 = 1/QM only is satisfied. In this case one can 
use the coefficient d~2 as a free parameter to minimize 
the matrix element (Y2), i.e. to keep at a minimum the 
angular spread of the neutron beam. The corresponding 
condition is dl2 = 2/QM. 

The above formulae may be applied also to the ana- 
lyser unit. The simplest way to operate the necessary 
changes is to imagine the neutron motion reversed in 
time: the detector may be viewed then as a neutron 
source and the analyser unit becomes a monochrom- 
ator. 

In the fixed-energy back-reflexion spectrometer of 
Alefeld (1972) all the four conditions (21), (22) and 
(23) are fulfilled. To keep the focusing conditions satis- 
fied while varying the neutron energy one can change 
either the distances L~ or the crystal curvature. Proce- 
dures for varying the crystal curvature have been 
described by Kalus et al. (1973) and Karas et al. (1974). 
However, the exact fulfilment of the focusing condi- 
tions is not always critical, as shown by the results of 
Nunes & Shirane (1971). 

Let us consider now the energy transfer resolution 
of the triple-axis spectrometer as a whole. This resolu- 
tion is given by the element ( X ] ) =  (Aco 2) of the resolu- 
tion function (1) covariance matrix. This element has 
the following expression: 

<X]>=(h2/m 2) ( k 2 < y 2 > - t  - 2klkF< Y 1Y4>q--k2<y~>) ( 2 4 )  

(it may be recalled that 111 = dk, and Y4 = dkf). Owing 
to the correlation between the monochromator and 
analyser units the mixed term is no longer zero. This 
fact may be exploited to reach a new kind of focusing, 
when (X~) is minimized by a negative mixed term 
(I"1 Y4). Good energy-transfer resolution may then be 
obtained at relatively coarse energy resolutions in the 
incident and scattered beams, that is at high luminosity. 
This is an interesting effect which deserves special at- 
tention. It will be discussed in detail elsewhere. 

I should like to acknowledge useful discussions with 
my colleague, A. D. Stoica, on the fundamental aspects 
of the computation method. 

APPENDIX 1 

The conventional spectrometer case 

The matrices needed for computing the resolution 
function of the conventional spectrometer with Soller 
collimators are defined below. 
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G is an 8 x 8  diagonal matrix of  the form G =  
(t~O2,0C~2,~O2,~1-2, t~2"2,~32,~2-2,]~32}. G - t  is the co- 
variance matrix of  the distribution of angular  variables. 

F is a 4 × 4 diagonal matrix" F =  {r/~z,r/~-2, r/~2, r/~-2}. 
F-~ is the covariance matrix of  the reflectivity function 
rM(~M, ~ ) r A (  ~A, ~A). 

C is a 4 x 8 matrix ( W = C U )  with the following 
non-zero elements: 

cn = c12 = cas = ca6 =½; c23 = 1/(2 sin 0M); ca3 = - c23; 
ca7 = 1/(2 sin 0A); c4a = - c47. 

A is a 6 × 8  matrix ( Y = A U )  with the following 
non-zero elements: 

an  = (k~ ctg 0~)/2; at2 = - au ;  a22 = a34 = kr; 
a45 ----- ( k  v ctg 0A)/2; a46 = - -  a45;  a55 ----- a67 = k~. 

B is a 4 x 6 matrix ( X = B Y )  with the following 
non-zero elements: 

bu = cos ~0; b~2 = sin ~0; b14 = - COS (to - 2 0 s )  ; 

b~s = - sin (~ - 20s) ; b21 = - b12;  b22 = bn ; b24 = - b t 5 ;  

• b25 =bx4; b33= 1 ; ba6= - 1 ; b4t=hkt/m; b44= -hkr/m. 

In the above expressions 20s is the scattering angle, 
0u and 0a are the Bragg angles of  the monochromato r  
and analyser crystals, and ~p is the angle between kt 
and the )(1 axis of  the resolution-function reference 
frame. To direct the X~ axis along Q0 one has to put 
tp = ATAN2[  - kr  sin (20s), k ~ -  k~ cos (20s)]. All these 
angles are measured in the tr igonometric sense: 0~ 
from the white-beam direction, Os and tp from the 
direction ofk~, 0a f rom kr. The different configurations 
of  the spectrometer are accounted for automatical ly 
by this measuring convention. 

The relation (l l) expresses the 4 × 4  covariance 
matrix M -~ of  the conventional spectrometer resolu- 
t ion function through the matrices defined above. 
When using (11) as such in numerical computat ions  
care must be taken to avoid putt ing r/M = 0  or r/A =0.  

A P P E N D I X  2 

The general case (spatial effects included) 

The matrices F, G, A and B of  Appendix 1 remain un- 
changed. If  there are no Soller collimators, then G = 0. 

The 13 × 13 covariance matrix S - 1 =  {(v~vj)} is cell- 
diagonal and has the following form: 8 - i =  
{(y02), (z0Z),Si-~,S~-Z, S~-X, (yZ), (z42)}, where S/-1 are the 
covariance matrices of  the distributions p~(r,) describing 
the shape of  the monochromat ing  crystal ( i = l ) ,  
sample ( i=2 )  and analysing crystal ( /=3) .  When the 
crystals are used in symmetric transmission or reflexion 
geometry the matrices Si - t  and S~ -I are diagonal. The 
matrix Sz  1 is diagonal for cylindrical samples and for 
samples disposed symmetrically with respect to the 
bisector of  the scattering angle. 

T is a 4 × 13 matrix ( W = T V )  with the following 
non-zero elements: 

ql  = 1/(2Lo); t13=COS OM(1/L1-- l/Lo)/2; 
t14=sin OM[1/Lo+ 1/L1-2/(QM sin 0M)]/2; 

q 6 = s i n  Os/(2LO; t17=cos Os/(2Ll); 
t22 = - 1/(2L0 sin 0M); 

t25=(1/Lo+ 1/LI-2 sin 0M/0~)/(2 sin 0M); 

t28 = - 1/(2L~ sin 0M); t36 = sin Os/(2L2); 
t37= - c o s  Os/(2L2); t 3 9 = C O S  0a(1/L3-1/L2)/2;  

t310=sin OA[1/L2+ 1/La--2/(QA sin 0A)]/2; ta12 = 1/(2L3); 

t48 = - 1/(2L2 sin 0A); 

t4n=(1/L2+ 1 / L 3 - 2  sin 0A/0])/(2 sin 0A); 

t4~3= - 1/(2La sin 0A). 

D is a 8×  13 matrix ( U = D V )  with the following 
non-zero elements: 

d n =  - 1/Lo; d~a = - c o s  OM/Lo; d~4=sin OM/Lo; 

d 2 2 = d x l ;  d25 = - d n ;  daa=cos OM/L~; da4=sin OM/L~; 
d36 = sin Os/Lt; d37 =cos  Os/L~; d4s = --  1 / L 1 ,  d48 = - d 4 5 ;  

d56 = sin Os/Lz; d59-- - cos OA/Lz; dsxo = sin OA/L2; 
d68 = - 1/L2; d611 = - d 6 8  ; d79 =cos  Oa/La; 
dTx0=sin OA/La; dTxz = l/L3; dsn = -d712; dst3=d712. 

The 4 x 4 covariance matrix M -1 o f  the triple-axis 
spectrometer resolution function is obtained through 
the relation (20) with the aid o f  the matrices defined 
above. 

A P P E N D I X  3 

Simplified case: no Soller collimators, 
thin crystals and sample 

When the thickness of  crystals and sample is neglected 
the xi and yi coordinates are no longer independent.  
The vector V of  the spatial coordinates has to be modi- 
fied t o  V = ( y o , y x , y 2 , y a , y 4 , z o ,  z l , z 2 , z a ,  z4).  The covari- 
ance matrix S - 1 =  {(v~vj)} becomes diagonal, with the 
following elements: 

(y2)=12 cos 2 Z,/12; (z~)=h2/12 

where l~ and h~ ( i=0 ,  1,2,3,4) are the length and the 
height of  the i th  thin plate and g~ is the plate inclina- 
tion angle with respect to the yi coordinate  axis of  
Fig. 1 (the neutron source and the detector are likened 
to thin plates disposed normally  to the neutron beams, 
Zo=Z4=0).  The inclination angles Z1 and Za are zero 
for crystals in symmetrical  reflexion, the angle X2 is 
zero for sample in symmetrical transmission. 

The 4 x 10 matrix T has now the following non-zero 
elements: 

tn = - 1/(2Lo); tx2 = [sin (OM + zO/Lo + sin (0M-  ZO/ 
L I - 2  cos Z1/QM]/(2 COS Z0;  

tx3 = c o s  (Os + Z 2 ) / ( 2 L 1  c o s  Z 2 ) ;  t26 = - -  1 / ( 2 L 0  sin 0M); 
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tzT=(1/Lo+ 1/L~-2 sin OM/O'~)/(2 sin OM); 

t28= -- 1/(2L1 sin OM); t33 = --COS (Os--X2)/(2L 2 cos 22); 

t34 = [ s in  (0 A +)~3)/L2 +sin (Oa-Za)/La-2 c o s  X,3/OA]/ 

(2 cos Z3); t35 = 1/(2L3); t4a= - 1/(2L2 sin 0A); 

t49=(1/Z2+ l / Z a - 2  sin 0A/Q~4)/(2 sin 0a); 

t4x0 = -- 1/(2L3 sin 0a). 

The modified 8 × 10 matrix D of the transformation 
from spatial to angular variables has the following 
non-zero elements: 

d n =  - 1/Lo; dxz=sin (OM+xO/(Lo COS Z1); 

d2z=sin (O~t-XO/(L~ cos Z1); 

d2a=cos (Os+X2)/(L1 cos Z2); da6=dn; d37 = - d n ;  

d47 = -- 1/L~; d48= - d ,  t7, 

d53 = - c o s  (Os-Z2)/(L2 c o s  ,~2); 

d54 = sin (0a +Za)/(L2 cos Z3); 

d64=sin (Oa-Z3)/(L3 cos Z3); d65 = 1/L3; d78 = - 1/L2; 

d79=-d78; 49 = -d65; 410=d6~. 

The monochromator unit transmission function 
PM(k3 obtained by neglecting the correlation with the 
analyser unit has, in the normal approximation, the 
expression: 

pM(Y)=PMo(ZTc)-3/2V~d-ett L exp ( -½YTLy) .  (A3.1) 

Here Y = k~ - kl and L -  1 = {(y~ yj>}. The normaliza- 
tion factor PM0 has the expression: 

R~a gg' 
PM0-- 4 sin 0M (2re) f(QM)f'((M) (A3.2) 

where f,  f ' ,  g and g' have the following expressions: 

2 2 2 2 2 2 2 1/2 f(QM)=(tlM+tn<Yo>+tt2<yl>+txa<Y2>) (A3.3) 

f , (ob)  = (r/g + 2 2 2 2 t26(Zo>+t27Qx>+t2(z2>) ~/2 (A3.4) 

g=(d~tdl2<y2> (Y~> + d2~d23<y~> <Y~> 
2 2 2 +d~2d23<Y,> <y2>)1/2 (A3.5) 

g'=(<z~> (z2>+ (z~> <z])+ <z2> <z]>)~tZ/(LoLO (A3.6) 

with the coefficients d~j and t u given above. 
The elements of the covariance matrix of the mono- 

chromator unit transmission function have the follow- 
ing expressions: 

k2<Ar2> k 2 ctg 20M 
<y2>_ z 2 + 4f2(oM) [r/Zd21<y2> 

..[_/72(42 d22)2<y2> 2 2 2 -- +~Md23<Y2> 
+ d2t(d22 1/OM)e<y~> 2 2 2  2 -- <Yl> + dnd23<Yo> <Y~> 

+ d23(d12-1/OM)2<y~> <y~>] (A3.7) 

< Y, Y2>- k} ctg OM 
4f2(OM) [2r/~(dndzz<Y~>- d23<y22>) 

2 2 2 + dnd23<Yo> <y2>_ d2dz2(d22_ 1/OM)<y2> <y2> 

-d l3(d~2  - 1 /e~)  ( 4 , - 2 / O M ) < y } >  <yl>] (A3.8) 

<y22> k2 2 2 2 2 2 2 
- -  +4tlMd23<Y2> 4f2(eM) [4~TMd22<Yx> 

2 2 2 2 2 2 + dlld22<Yo> <y~> + dndz3<Yo> <y2> 
+ d23(d~2 - 2/eM)Z<y2> <y2>] (A3.9) 

<Z2>_  k~ '2 2 2 
L~f'2(OM) [r/M((Za ) + <Z2> ) Jr_ t~6(<Z~> 

+ <Z~>)(Z20> + (t26 + 1/OM) 2<Z2> <Z2>] . (A3.10) 
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